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Abstract. We present in this paper several results related to the study of multivalued com-
plementarity problems. Our results are based on the notions of exceptional family of elements

and infinitesimal exceptional family of elements. A duality between these notions and the
scalar derivatives are also used. The duality is achieved by using inversions.
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1. Introduction

The complementarity theory is now in developing. The main goal of this
relatively new domain of Applied Mathematics is the study of complemen-
tarity problems. In many practical problems the complementarity problems
are related to the study of equilibrium; equilibrium as it is considered in
Physics, in Technics and also the equilibrium of economical systems.
There exists four classes of complementarity problems: (1) explicit com-

plementarity problems; (2) implicit complementarity problems; (3) comple-
mentarity problems with respect to an ordering and (4) multivalued
complementarity problems. The multivalued complementarity problems are
considered because in many practical problems instead of single-valued
mappings set-valued mappings arise. The set-valued mappings are related
to the presence of perturbations in the approximate definition of function
values or to the uncertainty in mathematical models. While many results
have been obtained for complementarity problems defined by single-valued
mappings, there are relatively few papers dedicated to complementarity
problems defined by set-valued mappings (see [1–14]).
In this paper we present several results on multivalued complementarity

problems by using the notions of exceptional family of elements, infinite-
simal exceptional family of elements and scalar derivatives. Because the
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notion of infinitesimal exceptional family of elements, we can use the scalar
derivative at the origin.
By a special inversion we introduce a duality between the exceptional

family of elements and the infinitesimal exceptional family of elements. By
using this duality we show how new classes of set-valued mappings for
which the multivalued complementarity problem has a solution can be
obtained. We used a similar duality in our papers (G. Isac and S.Z.
Németh, submitted for publication) dedicated to the complementarity
problems defined by single-valued mappings.
This paper emphasizes the effectiveness of the topological method based

on the notion of exceptional family of elements introduced by the first
author of this paper in [15] and applied in the study of complementarity
problems and variational inequalities in [10, 15–29]. We note that the
notion of exceptional family of elements is based on the Leray–Schauder
type alternatives.
This work can be considered as a starting point of a new research direc-

tion in the study of multivalued complementarity problems.

2. Preliminaries

Let ðH; h�; �iÞ be a Hilbert space. K � H is called a closed pointed convex
cone if the following conditions are satisfied:

1. Kþ K � K,
2. kK � K for all k 2 Rþ,
3. K \ ð�KÞ ¼ f0g.

A closed pointed convex cone K induces an ordering on H defined by xOy
if and only if y� x 2 K. The dual cone of K is the closed convex cone K�

defined by

K� ¼ fy 2 Hjhx; yiP0 for all x 2 Kg:
Since K is closed and convex, the projection operator PK :H! K onto K is
well defined by the equation

kx� PKðxÞk ¼ min
y2K
kx� yk:

It is known that for every x 2 H, PKðxÞ is uniquely defined by the rela-
tions:

(i) hPKðxÞ � x; yiP0 for all y 2 K,
(ii) hPKðxÞ � x;PKðxÞi ¼ 0.

All topological vector spaces in this paper are assumed to be real Haus-
dorff spaces. Let E, F be topological vector spaces, X � E and Y � F.
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Denote by oX, X and coðXÞ the boundary, the closure and the convex hull
of X, respectively and by PðXÞ the family of all non-empty subsets of X.
Let f :X! Y be a set-valued mapping, i.e., f :X! PðYÞ. The mapping f

is called upper semicontinuous (u.s.c.) on X if the set fx 2 X j fðxÞ � Vg is
open in X whenever V is an open subset of Y. f is said to be compact if
fðXÞ is relatively compact in Y.
A subset D of E is called contractible if there is a continuous mapping

h :D� ½0; 1� ! D with hðx; 0Þ ¼ x and hðx; 1Þ ¼ x0, for some x0 2 D.
We note that if D is convex, it is contractible since for any x0 2 D we

can consider hðx; tÞ ¼ tx0 þ ð1� tÞx. Similarly, a starshaped set at x0 is
contractible to x0. If M � X is a non-empty subset, we say that a continu-
ous mapping r :X!M is a retraction if and only if rðxÞ ¼ x for all x 2M.
In this case we say that M is a retract of X. A set D � X is called a neigh-
borhood retract if and only if D is a retract of some of its neighborhoods.
A compact metric space M is called an absolute neighborhood retract

(ANR) if it has the universal property that every homeomorphic image of
M in a separable metric space is a neighborhood retract. Every compact
convex set in an Euclidean space is an absolute neighborhood retract. It is
well known that if f :X! Y is (u.s.c) and fðxÞ is compact for every x 2 K,
then for every compact subset D of X the set

fðDÞ ¼
[

x2D
fðxÞ

is also compact [30].
If X is a lattice with a minimal element denoted by 0, a function

U : PðEÞ ! X is called a measure of non-compactness provided that the fol-
lowing conditions hold for any X1;X2 2 PðEÞ:

1. UðcoðX1Þ ¼ UðX1Þ,
2. UðX1Þ ¼ 0 if and only if X1 is precompact,
3. UðX1 [ X2Þ ¼ maxfUðX1Þ;UðX2Þg.

We say that a mapping f :X! Y is U-condensing if for all A � X with
UðfðAÞÞPUðAÞ, A is relatively compact.
A compact set-valued mapping f :X! E is U-condensing if either the

domain X is complete or E is quasi-complete.
Every set-valued mapping defined on a compact set is U-condensing (see

[31–33]).

3. Approachable and approximable mappings

Let EðsÞ be a Hausdorff locally convex topological vector space, U be a
fundamental basis of convex symmetric neighborhoods of the origin and
X;Y non-empty subsets of E. In this paper we suppose that f :X! Y is a
set-valued mapping with non-empty values.
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We say that a single-valued mapping s :X! Y is a selection of the set-
valued mapping f :X! Y if for any x 2 X, sðxÞ 2 fðxÞ.
In [31, 34–38] were introduced and studied the following notions.
For given U;V 2 U, a function s :X! Y is called a ðU;VÞ-approximable

selection of f if for any x 2 X,

sðxÞ 2 ðf ½ðxþUÞ \ X� þ VÞ \ Y:

The set-valued mapping f : X! Y is said to be approachable if it has a
continuous ðU;VÞ-approximable selection for any ðU;VÞ 2 U� U.
Finally, we say that f :X! Y is approximable if its restriction f jD to any

compact subset D of X is approachable. Examples of approachable and ap-
proximable mappings can be found in [31, 34–38]. Now we indicate a few
examples.
If X is a topological space, Y a convex subset in a locally convex space

and f :X! Y an u.s.c. with convex values, then f is approximable. If X is
a compact ANR, Y is an ANR and the values of f are compact, then f is
approachable.

4. Complementarity problem

Let ðH; h�; �iÞ be a Hilbert space, K � H a closed pointed convex cone and
f :H! H a set-valued mapping with non-empty-values.
We say that f is completely upper semicontinuous (c.u.s.c.) if it is upper

semicontinuous and for any bounded set B � H we have that
fðBÞ ¼

S
x2B fðxÞ is relatively compact.

We say that f is projectionally U-condensing (projectionally approximable)
with respect to K if PKðf Þ is U-condensing (resp. approximable).
TheMultivalued Complementarity Problem defined by f and the cone K is

MCPðf;KÞ:
find x� 2 K and

xf� 2 fðx�Þ \ K� such that

hx�; xf�i ¼ 0:

8
><

>:

5. Scalar derivatives

Let ðH; h�; �iÞ be a Hilbert space, C � H a set which contains at least one
non-isolated point; F;G :C! H be set-valued mappings and x0 a non-iso-
lated point of C. The following definition is an extension of Definition 2.2
[39]:

DEFINITION 5.1. The limit

F#ðx0Þ ¼ lim inf
x!x0 ;x2C

xF2FðxÞ;xF
0
2Fðx0Þ

hxF � xF0 ;x� x0i
kx� x0k2
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is called the lower scalar derivative of F at x0. Taking lim sup in place of
lim inf , we can define the upper scalar derivative F

#ðx0Þ of F at x0 similarly.

Definition 5.1 can be extended for the unordered pair of set-valued map-
pings ðF;GÞ. The idea was inspired by the notion of derivative of a func-
tion with respect to another function [40].

DEFINITION 5.2. The limit

ðF;GÞ#ðx0Þ ¼ lim inf
x!x

0
;x2C

xF2FðxÞ;xF
0
2Fðx

0
Þ

xG2GðxÞ;xG
0
2Gðx

0
Þ

hxF � xF0 ; x
G � xG0 i

kx� x0k2

is called the lower scalar derivative of the unordered pair of set-valued
mappings ðF;GÞ at x0. Taking lim sup in place of lim inf , we can define the

upper scalar derivative ðF;GÞ#ðx0Þ of ðF;GÞ at x0 similarly.

REMARK 5.1. If G ¼ I, we obtain Definition 5.1.

Scalar derivatives were studied in [39, 41] and successfully applied to fixed
point theorems in [42, 43] and to complementarity problems in [44, 45].

6. Inversions

Let ðH; h�; �iÞ be a Hilbert space and k � k the norm generated by h�; �i. The
following definition is an extension of Example 5.1 p. 169 [46]:

DEFINITION 6.1. The operator

i :H n f0g ! H n f0g; iðxÞ ¼ x

kxk2

is called inversion (of pole 0).

It is easy to see that i is one to one and i�1 ¼ i.
Let K � H be a closed pointed convex cone and f :K! H a set-valued

map. Since K n f0g is an invariant set of i the following definition makes
sense.

DEFINITION 6.2. The inversion (of pole 0) of the set-valued mapping f is
the set-valued mapping Iðf Þ :K! H defined by

Iðf ÞðxÞ ¼ kxk2ðf � iÞðxÞ if x 6¼ 0,
f0g if x ¼ 0.

�

We can show that IðIðf ÞÞ ¼ f.
The properties of inversions were studied in detail in [42].
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7. Exceptional family of elements

The next definition can be found in [9].

DEFINITION 7.1. Let ðH; h�; �iÞ be a Hilbert space, K � H be a closed
pointed convex cone and f : H! H a set-valued mapping. We say that a
family of elements fxrgr>0 � K is an exceptional family of elements for f
with respect to K, if for every real number r > 0, there exists a real number
lr > 0 and an element xfr 2 fðxrÞ such that the following conditions are sat-
isfied:

1. ur ¼ lrxr þ xfr 2 K� for all r > 0,
2. hur;xri ¼ 0 for all r > 0,
3. kxrk ! þ1 as r! þ1.

The next theorem is Theorem 2 of [9].

THEOREM 7.1. Let ðH; h�; �iÞ be a Hilbert space, K � H a closed pointed
convex cone and f :H! H an u.s.c set-valued mapping with non-empty val-
ues. If the following assumptions are satisfied

1. x� fðxÞ is projectionally U-condensing, or fðxÞ ¼ x� TðxÞ, where T is
a c.u.s.c. set-valued mapping with non-empty values,

2. x� fðxÞ is projectionally approximable and PK x� fðxÞ½ � is with closed
values,

then there exists either a solution to the problem MCPðf;KÞ, or an excep-
tional family of elements for f with respect to K.

The next definition can be found in [9].

DEFINITION 7.2. Let ðH; h�; �iÞ be a Hilbert space, K � H a closed pointed
convex cone. We say that a set-valued mapping f :H! H with non-empty
values satisfies condition H with respect to K if, there exists a real number
q > 0 such that for each x 2 K with kxk > q there exists p 2 K with
kpk < kxk such that hx� p;xfiP0 for all xf 2 fðxÞ.

DEFINITION 7.3. Let ðH; h�; �iÞ be a Hilbert space, K � H a closed pointed
convex cone. We say that a set-valued mapping f : H! H with non-empty
values satisfies condition eH with respect to K if, there exists a real number
q > 0 such that for each x 2 K there exists p 2 K with hp; xi < kxk2 such
that hx� p; xfiP0 for all xf 2 fðxÞ.

The next lemma shows that condition eH is an extension of condition H.
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LEMMA 7.1. Let ðH; h�; �iÞ be a Hilbert space, K � H a closed convex cone
and f :H! H a set-valued mapping with non-empty values. If f satisfies con-
dition H with respect to K, then it satisfies the condition eH with respect to K.

Proof. Since f satisfies condition H with respect to K, there exists q > 0
such that for each x 2 K with kxk > q, there exists p 2 K with kpk < kxk
such that hx� p;xfiP0 for all xf 2 fðxÞ. By the Cauchy inequality

hp;xiOkpkkxk < kxk2:
Hence, f satisfies condition eH with respect to K. (
The next theorem is proved in [9].

THEOREM 7.2. Let H be a Hilbert space, K � H a closed pointed convex
cone and f : H! H a set-valued mapping with non-empty values. If f satisfies
condition H with respect to K, then it is without exceptional family of ele-
ments with respect to K.

THEOREM 7.3. Let H be a Hilbert space, K � H a closed pointed convex
cone and f : H! H a set-valued mapping with non-empty values. If f satisfies
condition eH with respect to K, then it is without exceptional family of ele-
ments with respect to K.

Proof. Suppose to the contrary, that f has an exceptional family of ele-
ments fxrgr>0 � K with respect to K. Since kxrk ! 1 as r!1, we can
choose a real number r such that kxrk > q. By condition eH there exists
pr 2 K such that hpr;xri < kxrk2 and

hxr � pr;x
fiP0; for all xf 2 fðxrÞ ð1Þ

By the definition of the exceptional family of elements there exists lr > 0
and xfr 2 fðxrÞ such that

ur ¼ lrxr þ xfr 2 K�

and
hur;xri ¼ 0

8
<

: ð2Þ

By Equation (1) and (2) we have

0Ohxr � pr;x
f
ri ¼ hxr � pr; ur � lrxri

¼hxr � pr; uri � lrkxrk2 þ lrhpr;xri
O� lrðkxrk2 � hpr;xriÞ < 0

which is a contradiction. (
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8. Infinitesimal exceptional family of elements

DEFINITION 8.1. Let ðH; h�; �iÞ be a Hilbert space K � H a closed pointed
convex cone and g :K! H a set-valued mapping with non-empty values.
We say that fyrgr>0 � K is an infinitesimal exceptional family of elements
for g with respect to K, if for every real number r > 0, there exists a real
number lr > 0 and an element ygr 2 gðyrÞ such that the following condi-
tions are satisfied:

1. vr ¼ lryr þ ygr 2 K�,
2. hvr; yri ¼ 0,
3. yr ! 0 as r! þ1.

DEFINITION 8.2. Let ðH; h�; �iÞ be a Hilbert space, K � H a closed pointed
convex cone. We say that a set-valued mapping g :H! H with non-empty
values satisfies condition iH with respect to K if, there exists a real number
k > 0 such that for each y 2 K n f0g with kyk < k, there exists q 2 K with
kqk < kyk such that

hy� q; ygiP0; ð3Þ
for all yg 2 gðyÞ.

DEFINITION 8.3. Let ðH; h�; �iÞ be a Hilbert space, K � H a closed pointed
convex cone. We say that a set-valued mapping g :H! H with non-empty
values satisfies condition i eH with respect to K if, there exists a real number
k > 0 such that for each y 2 K n f0g with kyk < k, there exists q 2 K with
hq; yi < kyk2 such that

hy� q; ygiP0; ð4Þ
for all yg 2 gðyÞ.

The next lemma shows that condition i eH is an extension of condition iH
and it can be proved similarly to Lemma 7.1.

LEMMA 8.1. Let ðH; h�; �iÞ be a Hilbert space, K � H a closed pointed con-
vex cone and g :H! H a set-valued mapping with non-empty values. If g
satisfies condition iH with respect to K, then it satisfies condition i eH with
respect to K.

THEOREM 8.1. Let ðH; h�; �iÞ be a Hilbert space, K � H a closed pointed
convex cone and g :H! H a set-valued mapping with non-empty values. If g
satisfies condition i eH with respect to K, then it is without infinitesimal excep-
tional family of elements with respect to K.
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Proof. Suppose to the contrary, that g has infinitesimal family of ele-
ments fyrgr>0 � K with respect to K. For any r > 0 such that kyrk < q
there is an element qr 2 K with hqr; yri < kyrk2 satisfying relation (3), i.e.,

hyr � qr; y
g
r ÞiP0:

for an arbitrary ygr 2 gðyrÞ. Since, according to Definition 8.1, hvr; yri ¼ 0
and vr 2 K�, we have

0Ohyr � qr; y
g
r i ¼ hyr � qr; vr � lryri

¼ � lrkyrk2 � hqr; vri þ lrhqr; yri
O� lrðkyrk2 � hqr; yriÞ < 0;

which is a contradiction. (

REMARK 8.1. At first sight Theorem 8.1 seems to be a direct conse-
quence of Theorems 9.2 and 9.4, proved in the next section. However, note
that there might be an infinitesimal family of elements of g which contains
zero.

COROLLARY 8.1. Let ðH; h�; �iÞ be a Hilbert space, K � H a closed pointed
convex cone and g :H! H a set-valued mapping with non-empty values. If g
satisfies condition iH with respect to K, then it is without infinitesimal excep-
tional family of elements with respect to K.

Proof. By Lemma 8.1 g satisfies condition i eH with respect to K. Hence,
by Theorem 8.1 g is without infinitesimal exceptional family of elements
with respect to K. (

REMARK 8.2. At first sight Corollary 8.1 seems to be a direct consequence
of Theorem 9.2 and 9.5, proved in the next section. However, note that
there might be an infinitesimal family of elements of g which contains zero.

9. A duality and main results

THEOREM 9.1. Let ðH; h�; �iÞ be a Hilbert space K � H a closed convex
cone and f : K! H a mapping. Then ðx�; xf�Þ j2f0g �H is a solution of
MCPð f;KÞ if and only if ðy�; yg�Þ is a solution of MCPðg;KÞ, where y� ¼ iðx�Þ
is the inversions of x�,

yg� ¼
1

kx�k2
xf�

and g ¼ Iðf Þ is the inversion of f.
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Proof. First we have to prove that yg� 2 gðy�Þ. Dividing both sides of the
relation xf� 2 fðx�Þ by kx�k2 we obtain

yg� 2
1

kx�k2
fðx�Þ;

which implies yg� 2 ky�k
2fðiðy�ÞÞ ¼ Ið f Þðy�Þ ¼ gðy�Þ. It is easy to see that

hy�; yg�i ¼
1

kx�k4
hx�;xf�i: ð5Þ

and

hyg�; zi ¼
1

kx�k2
hxf�; zi; ð6Þ

for every z 2 K. By using (5),

hx�; xf�i ¼ 0

if and only if

hy�; yg�i ¼ 0:

By using (6), xf� 2 K� if and only if yg� 2 K�. (

THEOREM 9.2. Let ðH; h�; �iÞ be a Hilbert space K � H a closed pointed
convex cone and f :K! H a set-valued mapping with non-empty values.
fxrgr>0 � K n f0g is an exceptional family of elements for f with respect to
K if and only if fyrgr>0 � K n f0g is an infinitesimal exceptional family of
elements for g with respect to K, where yr ¼ iðxrÞ and g ¼ IðfÞ.

Proof. Bearing in mind the notations of Definition 8.1, we have

vr ¼ lryr þ ygr ;

for some ygr 2 gðyrÞ. Hence,

vr ¼ kyrk2 lriðyrÞ þ
ygr

kyrk2

 !
:

Since i�1 ¼ i, we have

vr ¼
1

kxrk2
lrxr þ kxrk2ygr
� �

: ð7Þ

Let

xfr :¼kxrk
2ygr : ð8Þ

We have xfr 2 fðxrÞ. Indeed,

xfr 2 kxrk
2gðyrÞ ¼ kxrk2Ið f ÞðyrÞ ¼ kxrk2kyrk2fðiðyrÞÞ ¼ fðxrÞ:

Now let
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ur ¼ lrxr þ xfr: ð9Þ
Equations (7–9) imply that

vr ¼
1

kxrk2
ur:

Therefore,

hvr; yri ¼
1

kxrk4
hur;xri ð10Þ

and

hvr; zi ¼
1

kxrk2
hur; zi; ð11Þ

for every z 2 K. Since kxrk � kyrk ¼ 1, kxrk ! þ1 if and only if yr ! 0.
By using (10),

hur;xri ¼ 0

if and only if

hvr; yri ¼ 0:

By using (11), ur 2 K� if and only if vr 2 K�. (

THEOREM 9.3. Let ðH; h�; �iÞ be a Hilbert space, K � H a closed pointed
convex cone and f : H! H an u.s.c set-valued mapping with non-empty val-
ues such that

1. x� fðxÞ is projectionally U-condensing, or fðxÞ ¼ x� TðxÞ, where T is
a c.u.s.c. set-valued mapping with non-empty values,

2. x� fðxÞ is projectionally approximable and PK½x� fðxÞ� is with closed
values,

3. fð0Þ \ K� ¼ ;:
If every infinitesimal exceptional family of elements for g ¼ Ið f Þ with
respect to K contains 0, then the multivalued complementarity problem
MCPðf;KÞ has a non-zero solution.

Proof. Since fð0Þ \ K� ¼ ;, if MCPðf;KÞ has a solution, then this solution
is non-zero. By Theorem 7.1, it is enough to prove that f is without excep-
tional family of elements with respect to K. Suppose to the contrary that
fxrgr>0 is an exceptional family of elements for f with respect to K. Since
fð0Þ \ K� ¼ ;, by the definition of an exceptional family of elements
fxrgr>0 � K n f0g. Hence, by Theorem 9.2, g ¼ IðfÞ has an infinitesimal
exceptional family of elements with respect to K which does not contain 0,
which is a contradiction. (
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THEOREM 9.4. Let ðH; h�; �iÞ be a Hilbert space, K � H a closed pointed
convex cone, f : H! H a set-valued mapping with non-empty values and
g ¼ Ið f Þ. Then, f satisfies condition eH with respect to K if and only if g sat-
isfies the condition i eH with respect to K.

Proof. Since g ¼ Ið f Þ and IðIð f ÞÞ ¼ f, it follows that

f ¼ IðgÞ: ð12Þ
Suppose that g satisfies condition i eH with respect to K and prove that f
satisfies condition eH with respect to K. Consider the constant k of condi-
tion i eH and let

q ¼ 1

k
:

Let x 2 K with

kxk > q; ð13Þ

y ¼ iðxÞ and xf 2 fðxÞ. Let yg ¼ xf=kxk2. We have yg 2 gðyÞ. Indeed, by
(12) we have

yg 2 fðxÞ
kxk2

¼ IðgÞðxÞ
kxk2

¼ kxk
2gðiðxÞÞ
kxk2

¼ gðyÞ:

Since

kyk ¼ 1

kxk ;

it follows that kyk < k. Hence, by condition i eH, there exists q 2 K with
hq; yi < kyk2 such that

hy� q; ygiP0: ð14Þ
Let

p ¼ q

kyk2
: ð15Þ

Since hq; yi < kyk2 and i�1 ¼ i, relation (15) implies that

h p;xi ¼ hq; yi
kyk4

<
1

kyk2
¼ kxk2: ð16Þ

By (14) we also have,

hx� p; xfi ¼ kxk2hx� p; ygi ¼ kxk4hy� q; ygiP0 ð17Þ

By (13), (16) and (17) f satisfies condition eH with respect to K.

Now, suppose that f satisfies condition eH with respect to K and prove
that g satisfies condition i eH with respect to K. Consider the constant q > 0
of condition eH and let
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k ¼ 1

q
:

Let y 2 K nf0g with kyk < k. We have to prove that there exists q 2 K with

hq; yi < kyk2 such that hy� q; ygiP0, for all yg 2 gðyÞ. Since f ¼ IðgÞ, we
can proceed as above. (

The next theorem can be proved similarly to Theorem 9.4.

THEOREM 9.5. Let ðH; h�; �iÞ be a Hilbert space, K � H a closed pointed
convex cone, f :H! H a set-valued mapping with non-empty values and
g ¼ IðfÞ. Then, f satisfies condition H with respect to K if and only if g satis-
fies condition iH with respect to K.

THEOREM 9.6. Let H be a Hilbert space, K � H a closed pointed convex cone
and f :H! H an u.s.c set-valued mapping with non-empty values such that

1. x� fðxÞ is projectionally U-condensing, or fðxÞ ¼ x� TðxÞ, where T is
a c.u.s.c. set-valued mapping with non-empty values,

2. x� fðxÞ is projectionally approximable and PK½x� fðxÞ� is with closed
values.

If g ¼ Ið f Þ satisfies condition iH with respect to K, then the multivalued
complementarity problem MCPðf;KÞ has a solution.

Proof. By Theorem 9.5, f satisfies condition H with respect to K. Hence,
Theorems 7.1 and 7.2 implies that the multivalued complementarity prob-
lem MCPðf;KÞ has a solution. (

THEOREM 9.7. Let H be a Hilbert space, K � H a closed pointed convex
cone and f : H! H an u.s.c set-valued mapping with non-empty values such
that
1. x� fðxÞ is projectionally U-condensing, or fðxÞ ¼ x� TðxÞ, where T is

a c.u.s.c. set-valued mapping with non-empty values,
2. x� fðxÞ is projectionally approximable and PK½x� fðxÞ� is with closed

values.

If g ¼ IðfÞ satisfies condition i eH with respect to K, then the multivalued com-
plementarity problem MCPðf;KÞ has a solution.

Proof. By Theorem 9.4, f satisfies condition eH with respect to K. Hence,
Theorems 7.1 and 7.3 implies that the multivalued complementarity prob-
lem MCPð f;KÞ has a solution.

THEOREM 9.8. Let ðH; h�; �iÞ be a Hilbert space, K � H a closed convex cone
and f : H! H an u.s.c set-valued mapping with non-empty values such that
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1. x� fðxÞ is projectionally U-condensing, or fðxÞ ¼ x� TðxÞ, where T is
a c.u.s.c. set-valued mapping with non-empty values,

2. x� fðxÞ is projectionally approximable and PK½x� fðxÞ� is with closed
values.

If there is a d > 0 and a mapping h : Bð0; dÞ \ K! K with hð0Þ ¼ 0 and

h
#ð0Þ < 1;

ðI� h; IðfÞÞ#ð0Þ > 0;

(

where Bð0; dÞ ¼ fz 2 H : kzk < dg, then the multivalued complementarity
problem MCPðf;KÞ has a solution.

Proof. Let g ¼ IðfÞ. Since h
#ð0Þ < 1, there is a k1 with 0 < k1 < d such

that for every y 2 K with kyk < k1 we have

hhðyÞ; yi < kyk2: ð18Þ
Since

ðI� h; gÞ#ð0Þ > 0;

there is a k2 with 0 < k2 < d such that for every y 2 K with kyk < k2 we
have

hy� hðyÞ; ygi > 0; ð19Þ
for all yg 2 gðyÞ. Let k ¼ minfk1; k2g. Obviously,

k > 0: ð20Þ
For

kyk < k ð21Þ
let q ¼ hðyÞ. Then, relations (18) and (19) imply

hq; yi < kyk2: ð22Þ
and

hy� q; ygiP0; ð23Þ

respectively for all yg 2 gðyÞ. Hence, relations (20)–(23) imply that g satis-
fies condition i eH. Hence, Theorem 9.7 implies that the problem MCPðf;KÞ
has a solution.

In the particular case h ¼ 0 we have as follows:

COROLLARY 9.1. Let ðH; h�; �iÞ be a Hilbert space, K � H a closed pointed
convex cone and f : H! H an u.s.c set-valued mapping with non-empty val-
ues such that
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1. x� fðxÞ is projectionally U-condensing, or fðxÞ ¼ x� TðxÞ, where T is
a c.u.s.c. set-valued mapping with non-empty values,

2. x� fðxÞ is projectionally approximable and PK½x� fðxÞ� is with closed
values.

If IðfÞ#ð0Þ > 0, then the multivalued complementarity problem MCPðf;KÞ
has a solution.
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